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SUMMARY

We refer to as mixed element/volume (MEV) methods the application of ®nite element for diffusion terms and
®nite volume for advection terms in a ¯ow model. The compatibility of these methods can be checked for some
low-order approximations; the resulting schemes may enjoy the relative mesh-regularity-independent accuracy
of ®nite element methods as discussed in a ®rst section. In recent years a number of developments (by INRIA
Dassault and T. Barth, among others) have produced P1-continuous schemes that involve some MUSCL/TVD
unidirectional limitation; the resulting schemes are very useful but sometimes may involve much more numerical
viscosity than necessary, especially for unsteady computations. In the present study, a new version is built by
using a larger molecule for the intercell ¯ux evaluation. The 1D version can be promoted to fourth- or even ®fth-
order spatial accuracy. The 2D version is no better than second-order-accurate; however, it involves only a sixth-
order dissipation and the global accuracy is markedly improved even on irregular meshes. The above
development extends the ability of the MUSCL/MEV scheme towards the accurate calculation of unsteady ¯ows
involving vortex shedding. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The simulation of aerodynamic processes has been concentrated for a long time on steady ¯ows, the

unsteady ones often being considered as a less important extension of simulation tool functionalities.

This tendency is also found in early ®nite element studies, for which the basic idea was an

equilibrium idea.

The explosive increase in the development of upwind methods, particularly Godunov-type ones,

able to solve accurately and stably unsteady Riemann problems (the famous `shock tube') has

undoubtedly changed the focus of scheme design.

Most of the new schemes related to Riemann solvers or arti®cial viscosity involve a fourth-order

difference as dissipative term. This type of stabilization can also be used in ®nite element (FE)

formulations and one ®rst important question is whether the usual properties of the FE approximation

are deteriorated by the stabilization term. This will be studied in the next section of this paper.
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The above fourth-order difference dissipation carries a third-order truncation error that can be

dominant in the computations, even in second-order-accurate 2D approximations; a lot of works

recently have aimed at reducing the impact of this kind of dissipation. In the case of steady

calculations in which the advected quantities are relatively constant along characteristics, marked

improvements can be obtained by reducing cross-wind dissipation.1,2 For truly unsteady ¯ows we

think it's interesting to investigate higher-order stabilization. Section 3 is devoted to the study of

high-order upwinding to be combined with a ®nite element/®nite volume formulation.

To demonstrate the ability of these new developments, a set of steady and unsteady ¯ows is

presented in Section 4.

2. STABILIZATION BY HIGHER-ORDER DISSIPATION

We consider a ®nite element scheme stabilized by a fourth-difference dissipation term. The problems

of interest are the convection±diffusion and convection-dominated stationary problems. The analysis

can, however, be extended without additional dif®culty to the unsteady case. Some of the results

presented are developed in Reference 3. These results show that there exists a choice of fourth-order

dissipations that preserve the accuracy properties of the Galerkin method.

2.1. Stabilized Galerkin method

We consider the convection±diffusion boundary value problem

ÿeDu� div� ~Vu� � f in O; u � 0 on G: �1�

For the reduced problem (e� 0) the boundary conditions are de®ned on the in¯ow boundary. We

consider a discrete linear continuous operator Dh : C0� �O� ! L2�O� associated with the triangulation

th and we introduce a symmetrical bilinear form bh de®ned on V h � V h by

bh�uh; vh� � ha��
OD

h
uhD

hvh d~x;

where a is a real positive constant and V h is the usual P1 ®nite element space function. The numerical

scheme under study is inspired by the variational ®nite difference method of CeÂa and is written as

follows:

find uh 2 V h
0 such that

ah�uh; vh� � l�vh� for all vh 2 V h
0 ;

�2�

where

ah�uh; vh� � a�uh; vh� � bh�uh; vh�: �3�

Here a is the bilinear form associated with the weak form of (1). Assumptions on the velocity vector

®eld ~V insure the existence and uniqueness of a solution uh 2 V h
0 of problem (2), (3).
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2.2. Convection±diffusion case

We shall present here global error estimates in the H1�O�-norm and L2�O�-norm under the

following assumptions on the ®nite difference operator Dh:

jDhvhj0;O 4C1hÿ1kvhk1;O for all vh 2 V h
0 ; �4a�

jDhjj0;O 4C2hÿmkjk2;O for all j 2 H2�O�; �4b�
where C1 and C2 are independent of h and m is a non-negative integer. The ®rst estimate is a discrete

inverse estimate without any quasi-uniform assumption on the triangulation. For a divided second-

order ®nite difference operator, inequality (4b) is obvious with m� 2, but depending on the `quality'

of the discrete operator Dh, it may be obtained with m� 1 or m� 0, the case m� 0 being an optimal

case (see below). In the theorems below the triangulation is assumed to be regular in the usual sense

and assumptions for coercivity of a are considered on the velocity vector ®eld ~V .

Theorem 1

Suppose the assumptions (4) are veri®ed. Let u be the exact solution of (1) and uh be the solution of

the approximate problem (2), (3). Suppose that the polygonal domain O has convex corners and

n 4 3. If a 5 2�m, then

kuÿ uhk1;O 4Chkuk2;O:
Furthermore; if a5 2� 2m; then

juÿ uhj0;O 4Ch2kuk2;O:

2.3 Convection-dominated case

Theorem 2

Suppose the assumptions (4) are veri®ed. Let u be the exact solution of (1) with 0 4 e 4 1. Let uh

be the solution of the approximate problem (2), (3). Suppose that the polygonal domain O has convex

corners and n 4 3. If a 5 2� 2m, then

juÿ uhj0;O 4Chkuk2;O C independent of e:

Furthermore, if a 5 3� 2m and h 4 h0(e), then

juÿ uhj0;O 4C
h2��
e
p kuk2;O; C independent of e:

The condition h 4 h0(e) is in fact the usual condition on the cell Peclet number.

2.4. Jameson-type dissipation operator

The fourth-difference Jameson-type dissipation for unstructured meshes is written as the square of

a second-order dissipation operator:4

D4�ui� � h3m�Ci�Dh
i �Dhuh�;
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where

Dh
ku � P

k2Vi

P
j2Vk

uj ÿ uk

meas�Ck�

and Ci is a cell around point Pi, an element of a dual triangulation of th. The dissipative term can also

be written in the expanded form

D4�ui� � h3
P

k2Vi

P
j2Vk

uj ÿ uk

meas�Ck�
ÿ h3 card�Vi�

P
k2Vi

uk ÿ ui

meas�Ci�
: �5�

Given a triangulation th, let us de®ne the ®nite difference second-order operator Dh in the following

manner: for all continuous functions v, Dhv is a step function, constant over each cell Ci and de®ned

by

Dhv � P
j2Vi

v�xj� ÿ v�xk�
meas�Ci�

on Ci; �6�

which gives the perturbation FE term bh�uh;fih� � ham�Ci�Dh
i �Dh

uh�. We recognize the Jameson-type

dissipation if a� 3. For the discrete operator Dh: C0�O� ! L2�O� given by (6), properties (4) are

veri®ed with m� 1 in the general case and with m� 0 for uniform Cartesian triangulations such that

each node has a symmetrical set of neighbours and if no dissipation is introduced for the boundary

points.

The optimal accuracy obtained with m� 0 in property (4b) can be connected with the so-called

linearity preservation (LP) property that designs second-order-accurate convection schemes for

steady solutions.5 In Reference 6, we prove that the property LP implies local consistency for

convection equations; furthermore, the order of consistency can be arbitrarily large for a scheme that

preserves polynomials of arbitrarily large order. We conjecture that the methodology presented in this

paper could be extended to the study of higher-order dissipation terms that can be written in a

symmetrical variational form, provided that more regularity assumptions on the solution are made.

Coef®cients for the dissipation in a variational form can be obtained that insure good accuracy for

stretched meshes in boundary layers.7 These coef®cients of the fourth-order dissipation can be

compared with those obtained for MUSCL-type or Jameson-type schemes on Friedrichs±Keller

Cartesian meshes and provide a theoretical justi®cation of the behaviour of these schemes on

stretched meshes.7

3. STILL-HIGHER-ORDER DISSIPATION

The main motivation of this study is the following. In many computations relying on second-order

Godunov, the numerical error is carried by the dissipation. We can get inspired by direct simulation

techniques in which ®lters correspond to very-high-even-order derivatives. In this paper we consider

upwind schemes of MUSCL type that involve sixth-order dissipations.

3.1. 2D unstructured case

The numerical integration with an upwind scheme generally leads to approximations which are

only ®rst-order-accurate. Van Leer has proposed some extensions of these schemes in order to get a

second-order-accurate solution. According to the MUSCL technique, one way to reach second-order
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accuracy is to evaluate ¯uxes with extrapolated values Wij and Wji at the interface of the cells (Figure

1):

Wij � Wi � 1
2
�~HW �ij � ~ij; Wji � Wj ÿ 1

2
�~HW �ji � ~ij; �7�

where the approximate `slopes' �~HW �ij; ji are obtained using a combination of centred and upwind

gradients. In order to increase the accuracy of the basic MUSCL construction, we propose to de®ne

these slopes as follows.

The centred gradient �~HW �Cij is de®ned as �~HW �Cij � ~ij � Wj ÿWi. The nodal gradient �~HW �i is

calculated on cell Ci as the average of the gradients on the triangles which include the considered

node:

�~HW �i �
1

area�Ci�
P

T2Ci

area�T �
3

P
k2T

Wk
~HFk jT : �8�

The upwind gradient is computed according to the de®nition of the downstream and upstream

triangles associated with edge [SiSj] (Figure 2). The downstream and upstream triangles are

respectively noted Tij and Tji. One has therefore �~HW �Dij � ~HW jTij
and �~HW �Uij � ~HW jTij

, where

HW jT �
P
k2T

Wk
~HFk jT

are the P1 Galerkin gradients on triangle T. This option allows extensions to local-extremum-

diminishing (LED) schemes as shown in Reference 8.

We now present several new choices for estimating the nodal gradients �~HW �ij and �~HW �ji.

Figure 1. Position of Wij and Wji on [Si, Sj]

Figure 2. Localization of extra interpolation points D�ij and D�ji of nodal gradients
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Method 1 (mixed nodes/triangles)

We propose to enlarge the stencil of the interpolation for taking into account a supplementary

upwind gradient. This upwind gradient �~HW �Dij
*

is computed using the nodal P1 Galerkin gradients at

the vertices of the edge of triangle Tij which is opposite to vertex Si (Figure 2):

�~HW �Dij
� � kD*m

��!k
kmn�!k �~HW �m �

kD*n
��!k
kmn�!k �~HW �n: �9�

We then de®ne the gradient �~HW �ij as (Figure 3)

�~HW �ij � ~ij � �1ÿ b��~HW �Cij � ~ij � b�~HW �Dij � ~ij
� xc��~HW �Dij � ~ij ÿ 2�~HW �Cij � ~ij � �~HW �Uij � ~ij�
� xd��~HW �Cij � ~ij ÿ 3�~HW �Dij � ~ij � 2�~HW �D*

ij � ~ij�: �10�

Method 2 (three upstream triangles)

This method is a variant of method 1. The strategy is based on the computation of the gradients

�~HW �ij� via the upwind gradients �~HW �mij and �~HW �nij which are calculated for the downstream and

upstream triangles associated with edge [SiSj] at points m and n (Figure 4). Then we de®ne

�~HW �Dij
� � kD*m

��!k
kmn
�!k �~HW �mij �

kD*n
��!k
kmn
�!k �~HW �nij; �11�

where

�~HW �mij � ~HW jTm
ij
; �~HW �nij � ~HW jTn

ij
: �12�

The advantage of this method is to have a small stencil with aligned points in the case of Friedrichs±

Keller regular meshes.

Method 3 (purely nodal)

The correction is built only with nodal gradients (Figure 5):

�~HW �ij � ~ij � �1ÿ b��~HW �Cij � ~ij � b�~HW �Dij � ~ij
� xd��~HW �Dij

� � ~ij ÿ 2�~HW �i � ~ij � �~HW �j � ~ij� �13�
with �~HW �Dij

�
given by (9).

Figure 3. Method 1: downstream triangle, upstream triangle and four nodal gradients
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The coef®cients b, xc and xd in (10) and (13) are upwinding parameters that control the

combination of fully upwind and centred slopes.

To sum up, these schemes have only sixth-order dissipation and are in general second-order-

accurate, but they become higher-order-accurate in the linear case for some values of the parameters

b, xc and xd (Table I).9,10

Note that in the non-linear case, Wu and Wang have shown that there exists no scheme of MUSCL

type with accuracy order higher than two.11

Figure 4. Construction of triangles Tm
ij and Tn

ij , method 2: three downstream triangles, three upstream triangles

Figure 5. Method 3: six nodal gradients

Table I. Accuracy of different versions of new scheme in 2D regular case

b xc xd Order

b-Scheme 1=3 0 0 3

Method 1 Scheme 1 1=3 ÿ1=6 0 4
Scheme 3 1=3 ÿ1=10 ÿ1=15 3

Method 2 Scheme 1 1=3 ÿ1=6 0 4
Scheme 2 5=12 0 ÿ1=12 4
Scheme 3 11=30 ÿ1=10 ÿ1=30 5

Method 3 Scheme 2 1=3 0 ÿ1=6 4
Scheme 3 1=3 ÿ1=30 ÿ2=15 5
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4. NUMERICAL ILLUSTRATION

4.1. Computation of 2D external steady ¯ow

As a steady ¯ow, an inviscid subsonic ¯ow at M1 � 0�63, y� 2�0� is computed about as NACA

0012 aerofoil using the different versions of the new scheme with a CFL number of about 1000 on

various grids. We are interested in the reduction of spurious numerically generated entropy deviation.

Three embedded meshes are considered with 800, 3114 and 12,284 nodes, in which ®ner meshes are

obtained by uniform division of the coarser ones (a non-optimal process for mesh quality, just

ensuring that the mesh size is divided by two). We present the entropy distributions generated by the

schemes on the three meshes (Figures 7, 9 and 11). The ¯ow singularity near the trailing edge is not

well captured, but overall improvement is evident. In particular, for the ®ner mesh, entropy levels

turn out to be about two times better with the new schemes. Examination of the Mach contours proves

that the new schemes give a better solution with 3114 nodes than does old one with 12,284 (Figures 6,

8 and 10).

4.2. Computation of 2D unsteady ¯ow

We present here the numerical simulation of the impulsive starting of an NACA 0012 aerofoil at

high angle of attack and low Mach number. The ¯ow is also unsteady and evolves in a situation

where vortices appear. The ¯ow conditions that we consider are given by M1� 0�1, y� 30 �,
Re� 1000 and the adimensional time (V1� 1 m sÿ1) is 3 s.

Figure 6. Mach contours about NACA 0012 aerofoil using different versions of new scheme on mesh with 800 nodes: 40 Mach
contours, DM� 0�05, Mm� 0�025, MM� 1�975
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The extra accuracy is ®rst demonstrated on a coarse unstructured mesh with 3114 vertices (Figure

12). With a ®ner mesh (12,284 vertices), scheme 3 is able to capture most of the details of this

complex ¯ow (Figure 13).

4.3. Aeroelastic applications

A ¯uid±structure interaction problem for a NACA 0012 aerofoil is considered.12 The ¯uid is

modelled by the Euler equations. We assume that the aerofoil has two degrees of freedom: the

vertical translation h of the elastic centre and the rotation a (Figure 14).

Figure 7. Entropy distribution generated by different schemes: subsonic aerofoil ¯ow at M1 � 0�63, 2� on mesh with 800 nodes

Figure 8. Mach contours about NACA 0012 aerofoil using different versions of new scheme on mesh with 3114 nodes: 40
Mach contours, DM� 0�05, Mm� 0�025, MM� 1�975
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The ¯uid±structure interaction problem is described by the system

@

@t
W � @

@x
F�W � � @

@y
G�W � � 0;

M �q�t� � C _q�t� � Kq�t� � Q�W �t��;
�14�

where W is the vector of conservative ¯ow variables, q is the displacement vector and Q is the

generalized force vector.

Figure 9. Entropy distribution generated by different schemes: subsonic aerofoil ¯ow at M1 � 0�63, 2� on a mesh with
3114 nodes

Figure 10. Mach contours about NACA 0012 aerofoil using different versions of new scheme on mesh with 12,284 nodes: 40
Mach contours, DM� 0�05, Mm� 0�025, MM� 1�975. The solutions calculated with the new scheme on the mesh with 3114

nodes (Figure 8) are as good as the computation with the old scheme on the mesh with 12,284 nodes

202 C. DEBIEZ ET AL.

INT. J. NUMER. METH. FLUIDS, VOL. 27: 193±206 (1998) # 1998 John Wiley & Sons, Ltd.



Figure 11. Entropy distribution generated by different schemes: subsonic aerofoil ¯ow at M1 � 0�63, 2� on mesh with
12,284 nodes

Figure 12. Comparison of b-scheme with b� 1/3 (left) and method 1, scheme 3 (right)

Figure 13. Method 1, scheme 3, ®ne mesh
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A weak coupling algorithm is used to solve the ¯uid±structure interaction system (14). The

differential system of the structure is computed independently of the Euler equations. The following

staggered procedure is used:

(i) t� T n: W n, qn and _qn

(ii) Qn(W)�Q(W n)

(iii) solving the equations of the structure

(iv) mesh moving

(v) solving the Euler equations.

We present aeroelastic results for the aerofoil using the different schemes.

As a preliminary we de®ne the following data which characterize the structure:

(a) the non-dimensional distance from the elastic axis to the mass centre, xa � Sa=mb �1�8,

where m is the total mass of the structure, Sa denotes the static imbalance of the aerofoil

about its elastic axis and b is the aerofoil semichord

(b) the inertial moment n2� Ia=mb2� 1�865, where Ia denotes the mass moment of inertia of the

aerofoil about its elastic axis

(c) the frequency of bending, o2
h � kh=m� 100 rad sÿ1, and the frequency of torsion,

o2
a� ka=Ia� 100 rad sÿ1, where kh and ka respectively denote the total stiffness of the

bending and the spring torsion.

(d) the absorption xh � Ch=2ohm � 0 and xa � Ca=2oaIa� 0, where Ch and Ca respectively

denote the absorption coef®cients of translation and rotation

(e) the mass ratio m�m=pr1b2� 60.

We consider a transonic ¯ow (Mach number M1� 0�8 and zero angle of attack) which is

initialized with the steady solution. The unstructured mesh used is composed of 800 nodes. At

the initial time a small disturbance is imposed on the structure through the initial condition

(d/dt)a(0)� 7 0�01. The object of the numerical study is to analyse the aeroelastic response of the

structure according to the kind of ¯ow; in particular, we want to observe the non-dimensional

dynamic pressure at ¯utter, �Q� (U1=boa
p
m)2. Depending on the value of �Q, the aeroelastic

response of the structure is stable, absorbed or ampli®ed. We thus want to determine the value of �Q
which corresponds to null ampli®cation.

Results are obtained with an implicit (Dt� T=500) upwind ®nite volume method with sixth-order

dissipation terms (Section 3.1). Comparisons are made between the different versions of the new

Figure 14. Description of aerofoil with two degrees of freedom
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scheme and the results of Rauch et al. obtained on a rather ®ne mesh with 2908 nodes13 for the value

of �Q� 0�5. We present in Figure 15 the evolution of the rotation angle of the aerofoil and of two

modes of the rotation. We observe that using method 1, scheme 3 and method 3, scheme 3 gives a

neutrally stable aeroleastic response, whereas the b-scheme with b� 1=3 ampli®es the rotation angle.

The new schemes give a good representation of the evolution of the second mode (high-frequency

mode), which is stable.

The ampli®cation coef®cient s and the pulsation o are evaluated and compared with those

obtained by Rauch et al. (see Table II). These quantities are estimated through the modal components

of the response assuming that the ampli®cation coef®cient follows an exponential rule (fi�t� �
A exp(st) sin(ot). In comparison with the classical b-scheme, we ®rstly remark that the new scheme

improves the determination of the value of the ampli®cation coef®cient, which must vanish for
�Q� 0�5. In comparison with the results obtained by Rauch et al. on a mesh with 2908 nodes, our new

scheme is able to give a satisfactory prediction of the ampli®cation and rotation coef®cients even on a

very coarse mesh.

Figure 15. Evolution of rotation a(t) (deg) of aerofoil and of two modal components of a(t) for �Q� 0�5 using different implicit
�Dt � T=500� versions of new scheme on mesh with 800 nodes
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5. FURTHER COMMENTS

This paper is dedicated to variational methods applicable to P1 variable representation. The ®rst part

evaluates the impact of fourth-order dissipations. The new scheme introduced in the second part

carries a notable improvement in accuracy, particularly for unsteady ¯ows; the stability is not much

degraded (a courant number of 1�8 can be used) and the extra cost with respect to scheme 1 is 5%.

Current investigations are being done with the aim of introducing a shock-capturing capability in this

scheme.
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